Source code for urbansim_templates.models.small_multinomial_logit

from __future__ import print_function

from collections import OrderedDict
import os
import pickle

import numpy as np
import pandas as pd

from choicemodels import MultinomialLogit
import orca

from urbansim_templates import modelmanager
from urbansim_templates.models import TemplateStep
from urbansim_templates.utils import get_data, update_column


[docs]@modelmanager.template class SmallMultinomialLogitStep(TemplateStep): """ A class for building multinomial logit model steps where the number of alternatives is "small". Estimation is handled by PyLogit via the ChoiceModels API. Simulation is handled by PyLogit (probabilities) and ChoiceModels (simulation draws). Multinomial logit models can involve a range of different specification and estimation mechanics. For now these are separated into two templates. What's the difference? "Small" MNL: - data is in a single table (choosers) - each alternative can have a different model expression - all the alternatives are available to all choosers - estimation and simulation use the PyLogit engine (via ChoiceModels) "Large" MNL: - data is in two tables (choosers and alternatives) - each alternative has the same model expression - N alternatives are sampled for each chooser - estimation and simulation use the ChoiceModels engine (formerly UrbanSim MNL) TO DO: - Add support for specifying availability of alternatives - Add support for sampling weights - Add support for on-the-fly interaction calculations (e.g. distance) Parameters ---------- tables : str or list of str, optional Name(s) of Orca tables to draw data from. The first table is the primary one. Any additional tables need to have merge relationships ("broadcasts") specified so that they can be merged unambiguously onto the first table. Among them, the tables must contain all variables used in the model expression and filters. The index of the primary table should be a unique ID. The `tables` parameter is required for fitting a model, but it does not have to be provided when the object is created. Reserved column names: '_obs_id', '_alt_id', '_chosen'. model_expression : OrderedDict, optional PyLogit model expression. This parameter is required for fitting a model, but it does not have to be provided when the object is created. model_labels : OrderedDict, optional PyLogit model labels. choice_column : str, optional Name of the column indicating observed choices, for model estimation. The column should contain integers matching the alternatives in the model expression. This parameter is required for fitting a model, but it does not have to be provided when the object is created. initial_coefs : list of numerics, optional Starting values for the parameter estimation algorithm, passed to PyLogit. Length must be equal to the number of parameters being estimated. If this is not provided, zeros will be used. filters : str or list of str, optional Filters to apply to the data before fitting the model. These are passed to `pd.DataFrame.query()`. Filters are applied after any additional tables are merged onto the primary one. Replaces the `fit_filters` argument in UrbanSim. out_tables : str or list of str, optional Name(s) of Orca tables to use for simulation. If not provided, the `tables` parameter will be used. Same guidance applies: the tables must be able to be merged unambiguously, and must include all columns used in the model expression and in the `out_filters`. out_column : str, optional Name of the column to write simulated choices to. If it does not already exist in the primary output table, it will be created. If not provided, the `choice_column` will be used. Replaces the `out_fname` argument in UrbanSim. out_filters : str or list of str, optional Filters to apply to the data before simulation. If not provided, no filters will be applied. Replaces the `predict_filters` argument in UrbanSim. name : str, optional Name of the model step, passed to ModelManager. If none is provided, a name is generated each time the `fit()` method runs. tags : list of str, optional Tags, passed to ModelManager. """ def __init__(self, tables=None, model_expression=None, model_labels=None, choice_column=None, initial_coefs=None, filters=None, out_tables=None, out_column=None, out_filters=None, name=None, tags=[]): # Parent class can initialize the standard parameters TemplateStep.__init__(self, tables=tables, model_expression=model_expression, filters=filters, out_tables=out_tables, out_column=out_column, out_transform=None, out_filters=out_filters, name=name, tags=tags) # Custom parameters not in parent class self.model_labels = model_labels self.choice_column = choice_column self.initial_coefs = initial_coefs # Placeholders for model fit data, filled in by fit() or from_dict() self.summary_table = None self.model = None
[docs] @classmethod def from_dict(cls, d): """ Create an object instance from a saved dictionary representation. Parameters ---------- d : dict Returns ------- SmallMultinomialLogitStep """ # Pass values from the dictionary to the __init__() method obj = cls(tables=d['tables'], model_expression=None, model_labels=None, choice_column=d['choice_column'], initial_coefs=d['initial_coefs'], filters=d['filters'], out_tables=d['out_tables'], out_column=d['out_column'], out_filters=d['out_filters'], name=d['name'], tags=d['tags']) # Load non-strings and model fit parameters # TO DO - handle non-existence cases more carefully than 'except pass'! try: k = d['model_expression_keys'] v = d['model_expression_values'] obj.model_expression = OrderedDict([(k[i], v[i]) for i in range(len(k))]) except: pass try: k = d['model_label_keys'] v = d['model_label_values'] obj.model_labels = OrderedDict([(k[i], v[i]) for i in range(len(k))]) except: pass obj.summary_table = d['summary_table'] if 'supplemental_objects' in d: for item in filter(None, d['supplemental_objects']): if (item['name'] == 'model-object'): obj.model = item['content'] return obj
[docs] def to_dict(self): """ Create a dictionary representation of the object. Returns ------- dict """ tmp_model_expression = self.model_expression self.model_expression = None d = TemplateStep.to_dict(self) self.model_expression = tmp_model_expression # Can't store OrderedDicts in YAML, so convert them if tmp_model_expression is not None: d.update({ 'model_expression_keys': [k for (k,v) in tmp_model_expression.items()], 'model_expression_values': [v for (k,v) in tmp_model_expression.items()], }) if self.model_labels is not None: d.update({ 'model_label_keys': [k for (k,v) in self.model_labels.items()], 'model_label_values': [v for (k,v) in self.model_labels.items()] }) # Add parameters not in parent class d.update({ 'model_labels': None, 'choice_column': self.choice_column, 'initial_coefs': self.initial_coefs, 'summary_table': self.summary_table }) # Add supplemental objects objects = [] if self.model is not None: objects.append({'name': 'model-object', 'content': self.model, 'content_type': 'pickle', 'required': True}) d.update({'supplemental_objects': objects}) return d
def _get_alts(self): """ Get a unique, sorted list of alternative id's included in the model expression. Returns ------- list """ ids = [] for k, v in self.model_expression.items(): # TO DO - check if PyLogit supports v being a non-list (single numeric) for elem in v: if isinstance(elem, list): ids += elem else: ids += [elem] return np.unique(ids) def _get_param_count(self): """ Count the number of parameters implied by the model expression. Returns ------- int """ count = 0 for k, v in self.model_expression.items(): # TO DO - check if PyLogit supports v being a non-list (single numeric) for elem in v: count += 1 return count def _to_long(self, df, task='fit'): """ Convert a data table from wide format to long format. Currently handles the case where there are attributes of choosers but not of alternatives, and no availability or interaction terms. (This is not supported in the PyLogit conversion utility.) TO DO - extend to handle characteristics of alternatives? - move to ChoiceModels Parameters ---------- df : pd.DataFrame One row per observation. The observation id should be in the index. Reserved column names: '_obs_id', '_alt_id', '_chosen'. task : 'fit' or 'predict', optional If 'fit' (default), a column named '_chosen' is generated with binary indicator of observed choices. Returns ------- pd.DataFrame One row per combination of observation and alternative. The observation is in '_obs_id'. The alternative is in 'alt_id'. Table is sorted by observation and alternative. If task is 'fit', a column named '_chosen' is generated with binary indicator of observed choices. Remaining columns are retained from the input data. """ # Get lists of obs and alts obs = df.index.sort_values().unique().tolist() alts = self._get_alts() # Long df is cartesian product of alts and obs obs_prod, alts_prod = pd.core.reshape.util.cartesian_product([obs, alts]) long_df = pd.DataFrame({'_obs_id': obs_prod, '_alt_id': alts_prod}) long_df = long_df.merge(df, left_on='_obs_id', right_index=True) if (task == 'fit'): # Add binary indicator of chosen rows long_df['_chosen'] = 0 long_df.loc[long_df._alt_id == long_df[self.choice_column], '_chosen'] = 1 return long_df
[docs] def fit(self): """ Fit the model; save and report results. This uses PyLogit via ChoiceModels. The `fit()` method can be run as many times as desired. Results will not be saved with Orca or ModelManager until the `register()` method is run. """ expr_cols = [t[0] for t in list(self.model_expression.items()) \ if t[0] != 'intercept'] df = get_data(tables = self.tables, filters = self.filters, extra_columns = expr_cols + [self.choice_column]) long_df = self._to_long(df) # Set initial coefs to 0 if none provided pc = self._get_param_count() if (self.initial_coefs is None) or (len(self.initial_coefs) != pc): self.initial_coefs = np.zeros(pc).tolist() model = MultinomialLogit(data=long_df, observation_id_col='_obs_id', choice_col='_chosen', model_expression=self.model_expression, model_labels=self.model_labels, alternative_id_col='_alt_id', initial_coefs=self.initial_coefs) results = model.fit() self.name = self._generate_name() self.summary_table = str(results.report_fit()) print(self.summary_table) # We need the PyLogit fitted model object for prediction, so save it directly self.model = results.get_raw_results()
[docs] def run(self): """ Run the model step: calculate simulated choices and use them to update a column. Alternatives that appear in the estimation data but not in the model expression will not be available for simulation. Predicted probabilities come from PyLogit. Monte Carlo simulation of choices is performed directly. (This functionality will move to ChoiceModels.) The predicted probabilities and simulated choices are saved to the class object for interactive use (`probabilities` with type pd.DataFrame, and `choices` with type pd.Series) but are not persisted in the dictionary representation of the model step. """ expr_cols = [t[0] for t in list(self.model_expression.items()) \ if t[0] != 'intercept'] df = get_data(tables = self.out_tables, fallback_tables = self.tables, filters = self.out_filters, extra_columns = expr_cols) long_df = self._to_long(df, 'predict') num_obs = len(df) num_alts = len(self._get_alts()) # Get predictions from underlying model - this is an ndarray with the same length # as the long-format df, representing choice probability for each alternative probs = self.model.predict(long_df) # Generate choices by adapting an approach from UrbanSim MNL # https://github.com/UDST/choicemodels/blob/master/choicemodels/mnl.py#L578-L583 cumprobs = probs.reshape((num_obs, num_alts)).cumsum(axis=1) rands = np.random.random(num_obs) diff = np.subtract(cumprobs.transpose(), rands).transpose() # The diff conversion replaces negative values with 0 and positive values with 1, # so that argmax can return the position of the first positive value choice_ix = np.argmax((diff + 1.0).astype('i4'), axis=1) choice_ix_1d = choice_ix + (np.arange(num_obs) * num_alts) choices = long_df._alt_id.values.take(choice_ix_1d) # Save results to the class object (via df to include indexes) long_df['_probability'] = probs self.probabilities = long_df[['_obs_id', '_alt_id', '_probability']] df['_choices'] = choices self.choices = df._choices # Save to Orca update_column(table=self.out_tables, fallback_table=self.tables, column=self.out_column, fallback_column=self.choice_column, data=self.choices)