Source code for urbansim.utils.misc

"""
Utilities used within urbansim that don't yet have a better home.

"""
from __future__ import print_function

import os

import numpy as np
import pandas as pd
from zbox import toolz as tz


def _mkifnotexists(folder):
    d = os.path.join(os.getenv('DATA_HOME', "."), folder)
    if not os.path.exists(d):
        os.makedirs(d)
    return d


[docs]def data_dir(): """ Return the directory for the input data. """ return _mkifnotexists("data")
[docs]def configs_dir(): """ Return the directory for the model configuration files. """ return _mkifnotexists("configs")
[docs]def runs_dir(): """ Return the directory for the run output. """ return _mkifnotexists("runs")
[docs]def models_dir(): """ Return the directory for the model configuration files (used by the website). """ return _mkifnotexists("configs")
[docs]def charts_dir(): """ Return the directory for the chart configuration files (used by the website). """ return _mkifnotexists("web/charts")
[docs]def maps_dir(): """ Return the directory for the map configuration files (used by the website). """ return _mkifnotexists("web/maps")
[docs]def simulations_dir(): """ Return the directory for the simulation configuration files (used by the website). """ return _mkifnotexists("web/simulations")
[docs]def reports_dir(): """ Return the directory for the report configuration files (used by the website). """ return _mkifnotexists("web/reports")
[docs]def edits_dir(): """ Return the directory for the editable files (used by the website). """ return _mkifnotexists("")
[docs]def config(fname): """ Return the config path for the file with the given filename. """ return os.path.join(configs_dir(), fname)
[docs]def get_run_number(): """ Get a run number for this execution of the model system, for identifying the output hdf5 files). Returns ------- The integer number for this run of the model system. """ try: f = open(os.path.join(os.getenv('DATA_HOME', "."), 'RUNNUM'), 'r') num = int(f.read()) f.close() except Exception: num = 1 f = open(os.path.join(os.getenv('DATA_HOME', "."), 'RUNNUM'), 'w') f.write(str(num + 1)) f.close() return num
[docs]def compute_range(travel_data, attr, travel_time_attr, dist, agg=np.sum): """ Compute a zone-based accessibility query using the urbansim format travel data dataframe. Parameters ---------- travel_data : dataframe The dataframe of urbansim format travel data. Has from_zone_id as first index, to_zone_id as second index, and different impedances between zones as columns. attr : series The attr to aggregate. Should be indexed by zone_id and the values will be aggregated. travel_time_attr : string The column name in travel_data to use as the impedance. dist : float The max distance to aggregate up to agg : function, optional, np.sum by default The numpy function to use for aggregation """ travel_data = travel_data.reset_index(level=1) travel_data = travel_data[travel_data[travel_time_attr] < dist] travel_data["attr"] = attr[travel_data.to_zone_id].values return travel_data.groupby(level=0).attr.apply(agg)
[docs]def reindex(series1, series2): """ This reindexes the first series by the second series. This is an extremely common operation that does not appear to be in Pandas at this time. If anyone knows of an easier way to do this in Pandas, please inform the UrbanSim developers. The canonical example would be a parcel series which has an index which is parcel_ids and a value which you want to fetch, let's say it's land_area. Another dataset, let's say of buildings has a series which indicate the parcel_ids that the buildings are located on, but which does not have land_area. If you pass parcels.land_area as the first series and buildings.parcel_id as the second series, this function returns a series which is indexed by buildings and has land_area as values and can be added to the buildings dataset. In short, this is a join on to a different table using a foreign key stored in the current table, but with only one attribute rather than for a full dataset. This is very similar to the pandas "loc" function or "reindex" function, but neither of those functions return the series indexed on the current table. In both of those cases, the series would be indexed on the foreign table and would require a second step to change the index. """ # turns out the merge is much faster than the .loc below df = pd.merge(pd.DataFrame({"left": series2}), pd.DataFrame({"right": series1}), left_on="left", right_index=True, how="left") return df.right
# return pd.Series(series1.loc[series2.values].values, index=series2.index)
[docs]def signif(val): """ Convert a statistical significance to its ascii representation - this should be the same representation created in R. """ val = abs(val) if val > 3.1: return '***' elif val > 2.33: return '**' elif val > 1.64: return '*' elif val > 1.28: return '.' return ''
naics_d = { 11: 'Agriculture', 21: 'Mining', 22: 'Utilities', 23: 'Construction', 31: 'Manufacturing1', 32: 'Manufacturing2', 33: 'Manufacturing3', 42: 'Wholesale', 44: 'Retail1', 45: 'Retail2', 48: 'Transportation', 49: 'Warehousing', 51: 'Information', 52: 'Finance and Insurance', 53: 'Real Estate', 54: 'Professional', 55: 'Management', 56: 'Administrative', 61: 'Educational', 62: 'Health Care', 71: 'Arts', 72: 'Accomodation and Food', 81: 'Other', 92: 'Public', 99: 'Unknown' }
[docs]def naicsname(val): """ This function maps NAICS (job codes) from number to name. """ return naics_d[val]
[docs]def numpymat2df(mat): """ Sometimes (though not very often) it is useful to convert a numpy matrix which has no column names to a Pandas dataframe for use of the Pandas functions. This method converts a 2D numpy matrix to Pandas dataframe with default column headers. Parameters ---------- mat : The numpy matrix Returns ------- A pandas dataframe with the same data as the input matrix but with columns named x0, x1, ... x[n-1] for the number of columns. """ return pd.DataFrame( dict(('x%d' % i, mat[:, i]) for i in range(mat.shape[1])))
[docs]def df64bitto32bit(tbl): """ Convert a Pandas dataframe from 64 bit types to 32 bit types to save memory or disk space. Parameters ---------- tbl : The dataframe to convert Returns ------- The converted dataframe """ newtbl = pd.DataFrame(index=tbl.index) for colname in tbl.columns: newtbl[colname] = series64bitto32bit(tbl[colname]) return newtbl
[docs]def series64bitto32bit(s): """ Convert a Pandas series from 64 bit types to 32 bit types to save memory or disk space. Parameters ---------- s : The series to convert Returns ------- The converted series """ if s.dtype == np.float64: return s.astype('float32') elif s.dtype == np.int64: return s.astype('int32') return s
def _pandassummarytojson(v, ndigits=3): return {i: round(float(v.ix[i]), ndigits) for i in v.index}
[docs]def pandasdfsummarytojson(df, ndigits=3): """ Convert the result of a Parameters ---------- df : The result of a Pandas describe operation. ndigits : int, optional - The number of significant digits to round to. Returns ------- A json object which captures the describe. Keys are field names and values are dictionaries with all of the indexes returned by the Pandas describe. """ df = df.transpose() return {k: _pandassummarytojson(v, ndigits) for k, v in df.iterrows()}
[docs]def column_map(tables, columns): """ Take a list of tables and a list of column names and resolve which columns come from which table. Parameters ---------- tables : sequence of _DataFrameWrapper or _TableFuncWrapper Could also be sequence of modified pandas.DataFrames, the important thing is that they have ``.name`` and ``.columns`` attributes. columns : sequence of str The column names of interest. Returns ------- col_map : dict Maps table names to lists of column names. """ if not columns: return {t.name: None for t in tables} columns = set(columns) colmap = {t.name: list(set(t.columns).intersection(columns)) for t in tables} foundcols = tz.reduce(lambda x, y: x.union(y), (set(v) for v in colmap.values())) if foundcols != columns: raise RuntimeError('Not all required columns were found. ' 'Missing: {}'.format(list(columns - foundcols))) return colmap
[docs]def column_list(tables, columns): """ Take a list of tables and a list of column names and return the columns that are present in the tables. Parameters ---------- tables : sequence of _DataFrameWrapper or _TableFuncWrapper Could also be sequence of modified pandas.DataFrames, the important thing is that they have ``.name`` and ``.columns`` attributes. columns : sequence of str The column names of interest. Returns ------- cols : list Lists of column names available in the tables. """ columns = set(columns) foundcols = tz.reduce(lambda x, y: x.union(y), (set(t.columns) for t in tables)) return list(columns.intersection(foundcols))